3.615 \(\int \frac{(1-\cos ^2(c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^3} \, dx\)

Optimal. Leaf size=155 \[ -\frac{b \left (3 a^2-2 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^3 d (a-b)^{3/2} (a+b)^{3/2}}-\frac{\left (a^2-2 b^2\right ) \sin (c+d x)}{2 a^2 d \left (a^2-b^2\right ) (a+b \cos (c+d x))}+\frac{\tanh ^{-1}(\sin (c+d x))}{a^3 d}-\frac{\sin (c+d x)}{2 a d (a+b \cos (c+d x))^2} \]

[Out]

-((b*(3*a^2 - 2*b^2)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a^3*(a - b)^(3/2)*(a + b)^(3/2)*d))
+ ArcTanh[Sin[c + d*x]]/(a^3*d) - Sin[c + d*x]/(2*a*d*(a + b*Cos[c + d*x])^2) - ((a^2 - 2*b^2)*Sin[c + d*x])/(
2*a^2*(a^2 - b^2)*d*(a + b*Cos[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.411733, antiderivative size = 155, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.161, Rules used = {3056, 3001, 3770, 2659, 205} \[ -\frac{b \left (3 a^2-2 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^3 d (a-b)^{3/2} (a+b)^{3/2}}-\frac{\left (a^2-2 b^2\right ) \sin (c+d x)}{2 a^2 d \left (a^2-b^2\right ) (a+b \cos (c+d x))}+\frac{\tanh ^{-1}(\sin (c+d x))}{a^3 d}-\frac{\sin (c+d x)}{2 a d (a+b \cos (c+d x))^2} \]

Antiderivative was successfully verified.

[In]

Int[((1 - Cos[c + d*x]^2)*Sec[c + d*x])/(a + b*Cos[c + d*x])^3,x]

[Out]

-((b*(3*a^2 - 2*b^2)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a^3*(a - b)^(3/2)*(a + b)^(3/2)*d))
+ ArcTanh[Sin[c + d*x]]/(a^3*d) - Sin[c + d*x]/(2*a*d*(a + b*Cos[c + d*x])^2) - ((a^2 - 2*b^2)*Sin[c + d*x])/(
2*a^2*(a^2 - b^2)*d*(a + b*Cos[c + d*x]))

Rule 3056

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c +
d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), I
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[a*(m + 1)*(b*c - a*d)*(A + C) + d*(A*b^2 + a^2*C)*
(m + n + 2) - (c*(A*b^2 + a^2*C) + b*(m + 1)*(b*c - a*d)*(A + C))*Sin[e + f*x] - d*(A*b^2 + a^2*C)*(m + n + 3)
*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ
[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3001

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/(a + b*Sin[e + f*x]), x], x] + Dist[(B*c - A
*d)/(b*c - a*d), Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0]
 && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\left (1-\cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^3} \, dx &=-\frac{\sin (c+d x)}{2 a d (a+b \cos (c+d x))^2}+\frac{\int \frac{\left (2 \left (a^2-b^2\right )-\left (a^2-b^2\right ) \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx}{2 a \left (a^2-b^2\right )}\\ &=-\frac{\sin (c+d x)}{2 a d (a+b \cos (c+d x))^2}-\frac{\left (a^2-2 b^2\right ) \sin (c+d x)}{2 a^2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))}+\frac{\int \frac{\left (2 \left (a^2-b^2\right )^2-a b \left (a^2-b^2\right ) \cos (c+d x)\right ) \sec (c+d x)}{a+b \cos (c+d x)} \, dx}{2 a^2 \left (a^2-b^2\right )^2}\\ &=-\frac{\sin (c+d x)}{2 a d (a+b \cos (c+d x))^2}-\frac{\left (a^2-2 b^2\right ) \sin (c+d x)}{2 a^2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))}+\frac{\int \sec (c+d x) \, dx}{a^3}-\frac{\left (b \left (3 a^2-2 b^2\right )\right ) \int \frac{1}{a+b \cos (c+d x)} \, dx}{2 a^3 \left (a^2-b^2\right )}\\ &=\frac{\tanh ^{-1}(\sin (c+d x))}{a^3 d}-\frac{\sin (c+d x)}{2 a d (a+b \cos (c+d x))^2}-\frac{\left (a^2-2 b^2\right ) \sin (c+d x)}{2 a^2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))}-\frac{\left (b \left (3 a^2-2 b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{a^3 \left (a^2-b^2\right ) d}\\ &=-\frac{b \left (3 a^2-2 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^3 (a-b)^{3/2} (a+b)^{3/2} d}+\frac{\tanh ^{-1}(\sin (c+d x))}{a^3 d}-\frac{\sin (c+d x)}{2 a d (a+b \cos (c+d x))^2}-\frac{\left (a^2-2 b^2\right ) \sin (c+d x)}{2 a^2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))}\\ \end{align*}

Mathematica [A]  time = 0.949406, size = 180, normalized size = 1.16 \[ \frac{-\frac{a \sin (c+d x) \left (b \left (a^2-2 b^2\right ) \cos (c+d x)+2 a^3-3 a b^2\right )}{(a-b) (a+b) (a+b \cos (c+d x))^2}+\frac{2 b \left (2 b^2-3 a^2\right ) \tanh ^{-1}\left (\frac{(a-b) \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{b^2-a^2}}\right )}{\left (b^2-a^2\right )^{3/2}}-2 \log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )+2 \log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )}{2 a^3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[((1 - Cos[c + d*x]^2)*Sec[c + d*x])/(a + b*Cos[c + d*x])^3,x]

[Out]

((2*b*(-3*a^2 + 2*b^2)*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/(-a^2 + b^2)^(3/2) - 2*Log[Cos[(c
 + d*x)/2] - Sin[(c + d*x)/2]] + 2*Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] - (a*(2*a^3 - 3*a*b^2 + b*(a^2 - 2
*b^2)*Cos[c + d*x])*Sin[c + d*x])/((a - b)*(a + b)*(a + b*Cos[c + d*x])^2))/(2*a^3*d)

________________________________________________________________________________________

Maple [B]  time = 0.053, size = 496, normalized size = 3.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-cos(d*x+c)^2)*sec(d*x+c)/(a+b*cos(d*x+c))^3,x)

[Out]

-2/d/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^2/(a+b)*tan(1/2*d*x+1/2*c)^3-1/d/a/(a*tan(1/2*d*x+1/2
*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^2/(a+b)*tan(1/2*d*x+1/2*c)^3*b+2/d/a^2/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1
/2*c)^2*b+a+b)^2/(a+b)*tan(1/2*d*x+1/2*c)^3*b^2-2/d/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^2/(a-b
)*tan(1/2*d*x+1/2*c)+1/d/a/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^2/(a-b)*tan(1/2*d*x+1/2*c)*b+2/
d/a^2/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^2/(a-b)*tan(1/2*d*x+1/2*c)*b^2-3/d/a*b/(a^2-b^2)/((a
+b)*(a-b))^(1/2)*arctan((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))+2/d/a^3*b^3/(a^2-b^2)/((a+b)*(a-b))^(1/2
)*arctan((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))-1/d/a^3*ln(tan(1/2*d*x+1/2*c)-1)+1/d/a^3*ln(tan(1/2*d*x
+1/2*c)+1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-cos(d*x+c)^2)*sec(d*x+c)/(a+b*cos(d*x+c))^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 3.27084, size = 2036, normalized size = 13.14 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-cos(d*x+c)^2)*sec(d*x+c)/(a+b*cos(d*x+c))^3,x, algorithm="fricas")

[Out]

[-1/4*((3*a^4*b - 2*a^2*b^3 + (3*a^2*b^3 - 2*b^5)*cos(d*x + c)^2 + 2*(3*a^3*b^2 - 2*a*b^4)*cos(d*x + c))*sqrt(
-a^2 + b^2)*log((2*a*b*cos(d*x + c) + (2*a^2 - b^2)*cos(d*x + c)^2 - 2*sqrt(-a^2 + b^2)*(a*cos(d*x + c) + b)*s
in(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2)) - 2*(a^6 - 2*a^4*b^2 + a^2*b^4 + (
a^4*b^2 - 2*a^2*b^4 + b^6)*cos(d*x + c)^2 + 2*(a^5*b - 2*a^3*b^3 + a*b^5)*cos(d*x + c))*log(sin(d*x + c) + 1)
+ 2*(a^6 - 2*a^4*b^2 + a^2*b^4 + (a^4*b^2 - 2*a^2*b^4 + b^6)*cos(d*x + c)^2 + 2*(a^5*b - 2*a^3*b^3 + a*b^5)*co
s(d*x + c))*log(-sin(d*x + c) + 1) + 2*(2*a^6 - 5*a^4*b^2 + 3*a^2*b^4 + (a^5*b - 3*a^3*b^3 + 2*a*b^5)*cos(d*x
+ c))*sin(d*x + c))/((a^7*b^2 - 2*a^5*b^4 + a^3*b^6)*d*cos(d*x + c)^2 + 2*(a^8*b - 2*a^6*b^3 + a^4*b^5)*d*cos(
d*x + c) + (a^9 - 2*a^7*b^2 + a^5*b^4)*d), -1/2*((3*a^4*b - 2*a^2*b^3 + (3*a^2*b^3 - 2*b^5)*cos(d*x + c)^2 + 2
*(3*a^3*b^2 - 2*a*b^4)*cos(d*x + c))*sqrt(a^2 - b^2)*arctan(-(a*cos(d*x + c) + b)/(sqrt(a^2 - b^2)*sin(d*x + c
))) - (a^6 - 2*a^4*b^2 + a^2*b^4 + (a^4*b^2 - 2*a^2*b^4 + b^6)*cos(d*x + c)^2 + 2*(a^5*b - 2*a^3*b^3 + a*b^5)*
cos(d*x + c))*log(sin(d*x + c) + 1) + (a^6 - 2*a^4*b^2 + a^2*b^4 + (a^4*b^2 - 2*a^2*b^4 + b^6)*cos(d*x + c)^2
+ 2*(a^5*b - 2*a^3*b^3 + a*b^5)*cos(d*x + c))*log(-sin(d*x + c) + 1) + (2*a^6 - 5*a^4*b^2 + 3*a^2*b^4 + (a^5*b
 - 3*a^3*b^3 + 2*a*b^5)*cos(d*x + c))*sin(d*x + c))/((a^7*b^2 - 2*a^5*b^4 + a^3*b^6)*d*cos(d*x + c)^2 + 2*(a^8
*b - 2*a^6*b^3 + a^4*b^5)*d*cos(d*x + c) + (a^9 - 2*a^7*b^2 + a^5*b^4)*d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-cos(d*x+c)**2)*sec(d*x+c)/(a+b*cos(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.61975, size = 420, normalized size = 2.71 \begin{align*} -\frac{\frac{{\left (3 \, a^{2} b - 2 \, b^{3}\right )}{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (2 \, a - 2 \, b\right ) + \arctan \left (\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{a^{2} - b^{2}}}\right )\right )}}{{\left (a^{5} - a^{3} b^{2}\right )} \sqrt{a^{2} - b^{2}}} + \frac{2 \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - a^{2} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 3 \, a b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 2 \, b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 2 \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + a^{2} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 3 \, a b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 2 \, b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (a^{4} - a^{2} b^{2}\right )}{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a + b\right )}^{2}} - \frac{\log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right )}{a^{3}} + \frac{\log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right )}{a^{3}}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-cos(d*x+c)^2)*sec(d*x+c)/(a+b*cos(d*x+c))^3,x, algorithm="giac")

[Out]

-((3*a^2*b - 2*b^3)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(2*a - 2*b) + arctan((a*tan(1/2*d*x + 1/2*c) - b*tan(
1/2*d*x + 1/2*c))/sqrt(a^2 - b^2)))/((a^5 - a^3*b^2)*sqrt(a^2 - b^2)) + (2*a^3*tan(1/2*d*x + 1/2*c)^3 - a^2*b*
tan(1/2*d*x + 1/2*c)^3 - 3*a*b^2*tan(1/2*d*x + 1/2*c)^3 + 2*b^3*tan(1/2*d*x + 1/2*c)^3 + 2*a^3*tan(1/2*d*x + 1
/2*c) + a^2*b*tan(1/2*d*x + 1/2*c) - 3*a*b^2*tan(1/2*d*x + 1/2*c) - 2*b^3*tan(1/2*d*x + 1/2*c))/((a^4 - a^2*b^
2)*(a*tan(1/2*d*x + 1/2*c)^2 - b*tan(1/2*d*x + 1/2*c)^2 + a + b)^2) - log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^3 +
 log(abs(tan(1/2*d*x + 1/2*c) - 1))/a^3)/d